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Abstract
Regular exercise is important for health, fitness and longevity in people living with type 1 diabetes, and many individuals seek to
train and compete while living with the condition.Muscle, liver and glycogen metabolism can be normal in athletes with diabetes
with good overall glucose management, and exercise performance can be facilitated by modifications to insulin dose and
nutrition. However, maintaining normal glucose levels during training, travel and competition can be a major challenge for
athletes living with type 1 diabetes. Some athletes have low-to-moderate levels of carbohydrate intake during training and rest
days but tend to benefit, from both a glucose and performance perspective, from high rates of carbohydrate feeding during long-
distance events. This review highlights the unique metabolic responses to various types of exercise in athletes living with type 1
diabetes.
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MDI Multiple daily injections
rtCGM Real-time continuous glucose monitoring
TIR Time in range

Introduction

As we approach the 100-year mark of the discovery of insulin,
people with type 1 diabetes may achieve a near normal life
expectancy with an overall high quality of life, but this requires
tight maintenance of on-target blood glucose levels and good
cardiovascular health [1]. Both of these aspects of diabetes
management are still very challenging for individuals with type
1 diabetes, even with access to specialised diabetes care [2].
Being regularly active with the disease improves cardiometa-
bolic health [3] and is associated with increased longevity [4].

Leading up to the next Summer Olympic Games, numer-
ous athletes with type 1 diabetes will train and compete at the
elite level, with some aspiring to pursue their podium dreams.
The day-to-day management of the condition remains oner-
ous, however, given the monotonous tasks of monitoring
glucose, carbohydrate/macronutrient counting, insulin dosing,
and managing stress/sick days, particularly while training and
preparing for competition (Fig. 1). Ongoing research is
increasingly focusing on the unique physiology of such
high-level athletes with type 1 diabetes, while also investigat-
ing how new insulin analogues and other therapeutic agents/
technologies might improve their glycaemic management.
This review highlights the challenges of high-level training
and competition in athletes with type 1 diabetes and identifies
some of the knowledge gaps that limit our capacity to provide
evidence-based strategies to optimise their performance.

Energy metabolism

Physical activity at all levels requires the mobilisation of vari-
ous fuel sources. To help better understand the unique
responses to exercise in type 1 diabetes, we briefly describe
the main energy systems used during various forms of exer-
cise in the following sections. Possible alterations in energy
metabolism caused by the disease are highlighted.

ATP and phosphocreatine During skeletal muscle contraction,
energy is provided from ATP, which is immediately
resynthesised from phosphocreatine. The limited phosphocrea-
tine stores require that ATP resynthesis occurs by catabolising
other fuel sources (lipid and carbohydrates) for exercise events
lasting more than a few seconds (Fig. 2). With insulin therapy,
and in the absence of nephropathy, ATP and phosphocreatine
levels at rest and post exercise appear normal in individuals
with type 1 diabetes [5]. However, a slower phosphocreatine
recovery time and impaired mitochondrial function/capacity

may exist in some individuals with the disease in whom blood
glucose levels are not tightly managed with insulin therapy [5,
6]. Insulin deprivation and/or sustained hyperglycaemia can
impair mitochondrial function, promote mitophagy, lower
ATP provision and increase reactive oxygen species production
in muscle, heart, kidney and brain [7].

Carbohydrates During high-intensity exercise, carbohydrate is a
primary fuel source. Glucose stores within liver and skeletal
muscle, in the form of glycogen, depend on the size and training
status of the individual and are the body’s primary carbohydrate
stores. In the average adult male weighing 70 kg, up to 160 g of
glucose can be stored in the liver, while up to 700 g of glucose
can be stored in the muscle [8]. A ‘normal’ blood glucose
concentration of ~5–7 mmol/l amounts to only ~4–6 g of total
blood glucose, depending on the person’s size. In individuals
without diabetes, intense exercise causes a transient rise in
glucose by ~2 mmol/l [9], while prolonged moderate-intensity
exercise induces a small and transient drop in glucose by ~2
mmol/l [10], albeit responses are highly variable. Glucose
production, predominantly by the liver via glycogenolysis and
gluconeogenesis, as well as oral carbohydrates, help support
normal blood glucose levels [11] (Fig. 2). Individuals with type
1 diabetes can have normal levels of muscle and liver glycogen
content if they are adequately fed, take insulin and have good
glycaemic control (HbA1c <58 mmol/mol [7.5%]) [12, 13].
Hepatic glycogen levels are lowered by poor glycaemic control
in individuals with type 1 diabetes [14], with only a partial resto-
ration with short-term improvements in glycaemic control [15].

The flux of glucose from liver to muscle during exercise is
impacted by insulin treatment, which can result in either hypo-
or hyperglycaemia [16]. High insulin levels limit hepatic
glucose mobilisation and increase muscle glucose disposal,
thereby causing hypoglycaemia. Inadequate insulin levels
cause hyperglycaemia, as glucose production exceeds
utilisation [16].

LipidsAdipose tissue and skeletal muscle lipid stores are plen-
tiful, even in lean individuals. Lipids are used heavily during
prolonged exercise, particularly as the activity duration
increases (Fig. 2). Peak absolute lipid oxidation rates occur
at ~55–60% of maximal aerobic rate in trained individuals
[17]. Intensive insulin therapy in type 1 diabetes often
increases body fat stores and body weight [18], although this
effect can be attenuated with dietary restriction [19] and/or
endurance training [20]. Lipolytic potential may be elevated
in type 1 diabetes, perhaps because of increased β-
adrenoceptors on fat cells [21]. However, a high insulin level
during exercise suppresses lipolysis/fat oxidation, as
compared with basal insulin concentrations [22] (see below).

Protein Although protein is a major component of lean tissue,
it does not normally contribute significantly to energy
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metabolism. However, some protein-derived amino acids,
such as leucine or alanine, can contribute minimally to skeletal
muscle energy needs, especially when carbohydrate availabil-
ity is restricted (i.e. by low-carbohydrate diets, periods of
insulin deficiency) [23]. The gluconeogenic conversion of

protein-derived and free amino acids into glucose during exer-
cise is upregulated in type 1 diabetes if insulin is withheld
[24]. Insulin deficiency for as little as 8 h in type 1 diabetes,
perhaps in combination with other factors (hyperglycaemia,
elevated cortisol, inflammation, etc.), rapidly promotes
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Fig. 1 Example training day (a) and competition day (b) for a competi-
tive athlete with type 1 diabetes. A number of variables need to be consid-
ered and controlled by an athlete with type 1 diabetes, including glucose
monitoring, basal and bolus insulin-dose modifications, snacks and
meals, hypo- and hyperglycaemia mitigation, hydration and stress
management. Although some flexibility may be allowed on training days

with regard to the timing of training and meals, this flexibility is lost on
competition days due to strict competition schedules. Note that this is an
example and will differ depending on numerous factors such as the event
that the athlete competes in. This figure is available as part of a
downloadable slideset
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protein catabolism, likely via activation of muscle-specific
transcription factors [25].

Insulin regulation and dysregulation
during exercise

Insulin mediates glucose disposal into skeletal muscle and
adipose tissue via increased glucose transporter type 4 translo-
cation. In liver, insulin signalling supresses glucose production
and activates glycogen synthesis via activation of various
enzymes, including glucokinase and glycogen synthase [26].
During endurance exercise in individuals without diabetes,
insulin secretion decreases via increased sympathoadrenal
drive, with the magnitude of decline closely linked to activity
intensity and duration [27]. This drop in insulin secretion facil-
itates lipid and glucose mobilisation from stores outside of the
muscle, while minimising the risk for hypoglycaemia as
contraction-mediated glucose disposal increases [16]. With
brief intensive exercise bouts, insulin secretion increases during
early recovery to offset rising glucose concentrations [9].

In individuals with type 1 diabetes, circulating insulin levels
depend on the amount and location of insulin administration.
Because insulin levels cannot immediately be lowered at exer-
cise onset, individuals with type 1 diabetes are often
hyperinsulinaemic during their activity (Fig. 3). The relative
hyperinsulinaemia during prolonged moderate-intensity exer-
cise supresses lipolysis/fat oxidation [22] while increasing
whole-body glucose utilisation and hypoglycaemia risk [16].
Exercise increases absorption rates of some [28], but not all
[29] forms of insulin, which can exacerbate the risk for
hypoglycaemia. With intensive exercise, hyperglycaemia post
exercise is aggravated by the inability to automatically increase
insulin delivery into the portal circulation [9]. Omitting insulin
altogether, well in advance of exercise, promotes excessive
hyperglycaemia and ketone production [30].

Selecting an insulin delivery method

The primary goal of exercise management in athletes with type
1 diabetes should be to limit dysglycaemia, with a secondary
goal of attempting to replace insulin to healthy physiological
insulin levels. Complete restoration of insulin to physiological
levels is impossible since insulin is administered subcutaneous-
ly rather than released into the portal circulation. While some
athletes with type 1 diabetes perform well using multiple daily
injections (MDI) of insulin [31], others prefer the flexibility
afforded by continuous subcutaneous insulin infusion (CSII)
[32]. The latter allows for temporary basal rate reductions in
anticipation of and/or recovery from prolonged aerobic exer-
cise, temporary basal rate increases for very intensive aerobic/
anaerobic work, and for basal rate reductions overnight, if
nocturnal hypoglycaemia is an issue. Hybrid closed-loop tech-
nology may support glycaemic management in athletes better
than traditional pump therapy as insulin delivery is informed by
current glucose levels, glucose predictions, previous insulin
delivery and other features of proprietary algorithms that
improve overall ‘time in range’ (TIR; the percentage of time
that an individual’s blood glucose is within the target level)
[33]. Currently approved hybrid closed-loop devices are suit-
able for prolonged aerobic exercise if a temporary (higher)
glucose target is set well before the start of exercise (i.e. 45–
90 min before the exercise start time).

In spite of these benefits, many individuals report that CSII
interferes with their sporting activities or that they would rather
not be attached to a medical device [34]. Maintaining insulin
infusion sets and glucose monitoring devices during exercise
and sport is challenging when there is increased perspiration
and the potential for sport contact and/or friction. For athletes
who prefer pump removal during exercise, a hybrid approach
that combines basal insulin delivery split between an ultra-long-
acting insulin and 50% reduced basal insulin delivery by CSII
[35] can be used. The addition of continuous glucose monitor-
ing (CGM) is beneficial, as athletes (particularly those with
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hypoglycaemia unawareness [36]) can gather glucose data,
respond to glucose trend arrows and alerts/alarms, and optimise
therapy [37]. Real-time CGM (rtCGM) offers the advantage of
alerts and alarms when glucose drifts away from target; howev-
er, exercise itself has an impact on sensor accuracy [38].

Strategies to address relative
hyperinsulinaemia during prolonged exercise

Relative hyperinsulinaemia during prolonged aerobic exercise
can be offset by basal and/or prandial insulin-dose reductions
and/or by increased carbohydrate feeding. For those using
CSII, basal insulin delivery can be reduced by 50–80%
90 min before exercise [39]. Suspending insulin delivery at
exercise onset is safe, albeit less effective in mitigating the
drop in blood glucose level [40]. Basal insulin delivery can
be resumed immediately post exercise, allowing circulating
insulin levels to rise before the recovery meal.

For individuals using MDI, the basal insulin dose can be
reduced by 20–50% before exercise to mitigate hypoglycaemia
risk [41]. Even insulin degludec can be reduced by ~25%, but
this reduction should be initiated 3 days before the exercise

event [42]. For other long-acting basal insulins (e.g. insulin
glargine, insulin detemir), the total basal insulin dose can be
divided into a morning and evening dose to allow for more
flexible adjustments. As an alternative (or complement) to basal
insulin-dose reduction, simple carbohydrate consumption (up
to 70–90 g/h) during prolonged aerobic activities can help
prevent hypoglycaemia and support performance [43].

In addition to the inability to lower insulin secretion into
the portal circulation at exercise onset, glucagon fails to rise
normally during prolonged exercise in type 1 diabetes, predis-
posing athletes to developing hypoglycaemia during some
activities [44]. Administering a mini dose of glucagon [45]
or glucagon in a dual-hormone closed-loop pump [46] helps
to eliminate hypoglycaemia; however, this has never been
tested in a setting of competition.

Strategies to address relative
hypoinsulinaemia post exercise

Managing competition-related hyperglycaemia, particularly at
the start of an event, can be challenging [47]. Psychological strat-
egies, such as cognitive restructuring and overlearning of skills,
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may help offset the stress effects [48]. Some athletes will tolerate,
or even plan for, a slightly elevated blood glucose level when
starting an event; others may choose to use a temporary basal rate
increase (if using CSII), a partial bolus insulin correction or a
prolonged aerobic warm-up to correct hyperglycaemia. Giving
a standard (i.e. full) insulin bolus correction before a prolonged
aerobic exercise event is not recommended unless ketones are
elevated, since doing so increases hypoglycaemia risk [11].

Many athletes have difficulty managing immediate post-
event hyperglycaemia [42]. When fasted, a bolus insulin
correction can be given after intense aerobic exercise [49] or
after resistance exercise [50]. However, with most prolonged
exercise events, late-onset hypoglycaemia remains common
for athletes [51] and, thus, basal insulin-dose reduction and/or
bedtime snack strategies are recommended [16].

Planning for glucose management
with dynamic training protocols

Athletes partake in varied training regimens, often differing
daily or seasonally with regard to training mode, intensity and
duration. Professional athletes frequently use ‘polarised’ train-
ing strategies, starting early in the season with low-intensity,
high-volume work, followed by high-intensity, lower volume
work later in the season. Before competition, training volume
generally tapers. Such training varieties may make glucose
management challenging for athletes with type 1 diabetes.
However, by individualising standard recommendations,
athletes can personalise strategies through trial and error to
temper glycaemic excursions [47].

Even when athletes with type 1 diabetes have well-honed
strategies, it is often useful to work with endocrinologists and
other healthcare providers [47]. The clinical team should first
review the ambulatory glucose profile (AGP) if rt-CGM or inter-
mittently scannedCGM(isCGM) is used, alongwith the athlete’s
current strategies for glucose management around training and
competition. Clinicians should review glucose monitoring down-
loads to ensure adequate basal insulin dosing and correct bolus
insulin usage to cover meals and hyperglycaemic excursions
[52]. The clinical team should offer reasonable initial strategies
for athletes who are newly diagnosed with type 1 diabetes, such
as the use of self-monitoring of blood glucose, nutrition counsel-
ling, newer insulin analogues and CSII with rtCGM or isCGM,
as appropriate. Various features, such as cost, comfort and accu-
racy, are considerations for product choice.

Strategies to manage different modalities
and durations of exercise

Assuming that glycaemic management has been optimised for
non-exercise days, the exercise type (aerobic, anaerobic, mixed)

and duration will largely dictate the strategies employed for
active days [16]. In general, prolonged predominantly aerobic
exercise promotes a drop in blood glucose concentration, while
more intensive aerobic and anaerobic events promote a glucose
rise [16]. The rise in blood glucose during intensive exercise in
the fasted state is reproducible and tends to be associated with a
rise in lactate [53]. For endurance events, such as marathons
and road cycling, athletes often have elevated glucose levels
prior to the event, sometimes because of psycho-physiological
stress responses [54] or as a purposeful coping strategy to limit
the likelihood of developing hypoglycaemia during the event
[55]. Typically, carbohydrate consumption is needed to main-
tain performance and prevent hypoglycaemia in endurance
events lasting ≥60 min [16]. More aerobically fit individuals
may have higher hypoglycaemic risk during exercise than those
who are less fit [56], potentially due to higher absolute power
outputs and greater rates of carbohydrate oxidation.
Conversely, having insulin at near basal levels or lower typical-
ly causes a rise in glucose during burst events, like pole vault-
ing, power lifting, sprinting or wrestling [57].

Optimising performance with nutrition

Several evidence-informed nutritional strategies exist to
support athletes in various settings [58]. However, for athletes
with type 1 diabetes, it is unclear if special or additional
considerations are required to optimise performance. Like
athletes without diabetes, those with diabetes follow the full
spectrum of carbohydrate intake strategies, depending on their
activity and training regimens.

Carbohydrate intake While some athletes use carbohydrate
counting to determine meal- and snack-based insulin-dose
adjustments, this procedure often lacks precision, particularly
with high-carbohydrate feeding [59]. Moreover, carbohy-
drates with differing glycaemic indices and mixed meals make
this practice difficult. If exercise occurs soon after a meal,
glucose disposal from the meal may be stimulated by both
insulin-dependent and insulin-independent signalling [60].
Although high-glycaemic index meals/snacks generally
increase insulin resistance in people without diabetes [61],
carbohydrate loading pre exercise and/or carbohydrate feed-
ing during competition with simple sugars is feasible [43] and
likely to be important for performance and glycaemic manage-
ment during competition and training.

According to self-report, some athletes with type 1 diabetes
adopt low or moderate carbohydrate diets to improve
glycaemic management (Fig. 4a). It is currently unclear if this
dietary approach has an impact on performance. Good long-
term glucose management improves performance in athletes
with type 1 diabetes: those with lower HbA1c levels
(~48 mmol/mol [6.5%]) have superior cardiorespiratory
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fitness and pulmonary function than those with higher HbA1c

levels (~62 mmol/mol [7.8%]) [62]. However, it is unclear if
achieving this via restricted carbohydrate feeding, rather than
by administering more insulin or by some other means, may
compromise endurance performance and/or increase
hypoglycaemia or ketoacidosis risk [63].

Muscle glycogen replenishment following exercise
requires effective blood glucose management and balancing
of carbohydrate intake with insulin dosing. In one study,

moderate carbohydrate intake (50% of total energy) was supe-
rior to high carbohydrate intake (59% of total energy) for
glycogen replenishment, glycaemic management and perfor-
mance [64]. If carbohydrate intake is limited after prolonged
exercise, restoring muscle glycogen levels is likely to take
longer [65], which may increase nocturnal hypoglycaemia
risk [63]. Co-ingesting protein with moderate amounts of
carbohydrate (e.g. 0.8 g kg−1 h−1) post exercise may provide
a feasible option for normal muscle glycogen repletion, while
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still balancing blood glucose levels [66]. However, high
dietary protein intake does not appear to increase muscle
glycogen repletion rates further in those already consuming
enough carbohydrate [67].

During exercise, carbohydrate requirements depend on the
use of insulin or other medications, exercise timing, activity
undertaken and starting blood glucose levels. Because of a
tendency for lower insulin levels and/or elevation in morning
cortisol and growth hormone levels, training before breakfast
may require little-to-no carbohydrate ingestion during activi-
ty, as compared with afternoon exercise [68]. An elevated pre-
exercise blood glucose level in the morning or afternoon
reduces carbohydrate intake needs. Participation in resistance
exercise [69] and high-intensity interval-type training [53]
may not require carbohydrate intake since glucose levels tend
not to drop.

Carbohydrate intake and/or insulin reduction is typically
required for activities lasting >30 min in a non-fasting state,
to prevent hypoglycaemia. For low-to-moderate-intensity
aerobic activities lasting 30–60 min that are undertaken when
circulating insulin is at basal levels, the intake of small
amounts (8–20 g) of carbohydrate may suffice to limit
hypoglycaemia, but are not likely to affect performance [70].
With higher circulating insulin exposure due to bolus insulin
administration, 30–60 g/h carbohydrate may be needed when
the exercise duration lasts >30 min [71]. Carbohydrate intake
rates of 0.4 g to 1.3 g carbohydrate per kg body mass per h
have been reported for athletes with type 1 diabetes exercising
in performance settings lasting ≥60 min (Fig. 4b). These stud-
ies found that carbohydrate intake within this range prevented
hypoglycaemia and enhanced endurance performance in
prolonged exercise [31, 43, 72–76].

Hydration and electrolyte balanceAdequate hydration during
training and competition is required to maintain blood volume
and for thermoregulation [77]. Athletes with type 1 diabetes
may experience mild to moderate dehydration during exercise
if their blood glucose is elevated, which can be exacerbated by
the fact that hyperglycaemia increases urinary water loss.
Fluid intake during training tends to be higher in type 1 diabe-
tes, as compared with control individuals, perhaps because of
elevated thirst caused by hyperglycaemia [78]. In general,
plain water or a carbohydrate–electrolyte beverage, depending
on glucose level, should be consumed at a rate of ~1 l/h [79].

Recommendations for rtCGM/isCGM use

rtCGM and isCGMmay allow athletes with type 1 diabetes to
better manage their glucose levels during training, competi-
tion and recovery. When used during prolonged exercise, the
initiation of carbohydrate feeding can be based on glucose
concentrations (e.g. sensor glucose <8.0 mmol/l), glucose

trend arrows and rate of change data [70]. Glucose data should
be analysed together with a connected smart pen that can
automatically log insulin administration [80], or with pump
data [81], to better manage complex situations that may arise
due to exercise. With multi-day training, monitoring the AGP
can help athletes and clinicians to define achievable blood
glucose (and, consequently, performance) goals [82]. Due to
the unique challenges of glycaemic management during
competition, athletes with type 1 diabetes should engage in
several training sessions that closely mimic competition-day
conditions to optimise management strategies.

The glycaemic targets for health and performance of
athletes with type 1 diabetes should be individualised.
However, we propose that for any training period, athletes
should aim for >70%TIR (3.9–10.0mmol/l), with <4% below
3.9 mmol/l and <1% below 3.0 mmol/l, identical to the recom-
mendations for the type 1 diabetes adult population [83] (Fig.
5). Since hypoglycaemia during exercise can severely impact
performance and, potentially, heart rate variability [84],
athletes should aim for <1% time below target and >75%
TIR during competition. Reducing glycaemic variability, as
measured by a coefficient of variation of ≤36% for CGM
values, is also recommended since values above this threshold
appear to correlate with increased hypoglycaemia risk [85].
While we acknowledge that these targets are ambitious, they
may be achievable with newer technologies and dedication.

Additional considerations

Many competing athletes deal with additional factors that can
affect performance. Poor recognition of hypoglycaemia, trav-
elling, optimisation of body weight and/or menstrual cycle
variations in insulin sensitivity are a few factors that may have
an impact on glucose control and performance.

Hypoglycaemia unawareness Individuals with type 1 diabetes
often develop impaired awareness of hypoglycaemia, which
increases the risk for a severe hypoglycaemic event by
approximately sixfold [86]. Active individuals may be at an
elevated risk for developing impaired hypoglycaemia aware-
ness and counterregulatory failure during exercise: routine
exercise blunts counterregulation during a hypoglycaemic
event [87], which may be a form of habituation. Altering the
training exposure to a novel stimulus, such as high-intensity
interval training, may help dishabituation and may improve
bo th hypog lycaemia symptom recogn i t i on and
counterregulation [88].

Weight management Sports like gymnastics and cycling
require low body weight (and/or fat mass) for performance,
while others benefit frommaximised bodymass (e.g. Olympic
deadlifts). Combat athletes aiming to compete in the lightest
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weight category possible often must lose weight for pre-event
weigh-ins [89]. These athletes typically combine chronic and
acute strategies to achieve target weights, including energy
restriction and dehydration [90]. Such high-risk practices
may increase the likelihood of severe dehydration and, possi-
bly, even death [91]. Safe and effective weight management
strategies are possible in athletes with type 1 diabetes. Since
insulin is an anabolic/anti-catabolic hormone [18], gradual
reductions in both energy intake and insulin daily dose are
effective for gradually lowering fat mass without compromis-
ing muscle mass and safety. It should be noted that acute
episodes of hypoglycaemia are associated with food cravings,
which can cause disinhibited eating behaviours [92]. Training
in settings of low circulating insulin levels should maximise
energy provision and training adaptations without requiring
excessive snacking, if weight loss is desired [63].

The female athlete Female athletes with type 1 diabetes may
have unique glycaemic responses to training and competition
depending on the stage of the menstrual cycle that they are
currently in, and may have a reduced risk for hypoglycaemia
as compared with male athletes [93]. Female athletes should
be aware that insulin and carbohydrate needs before and after
exercise/training may differ throughout their menstrual cycle.
In general, higher blood glucose levels are found during the
luteal phase, which is often not fully abolished by increasing

basal insulin delivery rate [94]. Since the luteal phase is also
associated with high oestrogen levels and rising progesterone
levels, hyperglycaemia is more prevalent [95] and an
increased reliance on lipids as a fuel source during training
and recovery may occur [96]. Moreover, the luteal phase is
associated with less muscle glycogen mobilisation during
endurance exercise, at least in those without diabetes [97],
implying that less carbohydrate intake may be required for
post-exercise glycogen replenishment.

Travel Regular travel, a key part of being a modern-day
athlete, can present a significant challenge to athletes with
type 1 diabetes. Individuals need to be well prepared for their
journey by ensuring they have enough accessible supplies
(Fig. 6) [98]. Difficulties may arise from practical decisions
about packing insulin properly and bringing spare diabetes-
related supplies (e.g. meters, sensors, pumps, needles, gluca-
gon, snacks, etc.) in carry-on luggage. Choosing appropriate
travel insurance, dealing with airport security procedures,
delayed flights and choosing appropriate on-board meals are
also important considerations. When flying long distances and
crossing multiple time zones, individuals must develop strat-
egies to adapt to new time zones, limit the effects of jet lag/
travel on insulin needs and be hypervigilant to manage blood
glucose levels [99]. Athletes should prepare for the possibility
of losing diabetes-related supplies, consuming unfamiliar

Glucose range
Target 

(% of �me)
>13.9 mmol/l

>10 mmol/l

3.9–10 mmol/l

<3.9 mmol/l
<3.0 mmol/l

>13.9 mmol/l

>10 mmol/l

3.9–10 mmol/l

<3.9 mmol/l

<5%

<25%a

>70%

<4%b

<1%

<5%

<25%a

>75%

<1%b

Glucose range
Target 

(% of �me)

a bTraining Compe��on

Fig. 5 Proposed CGM-based targets for athletes with type 1 diabetes
during training (a) and competition (b). Targets for training days are
based on the international consensus [83], while the targets for competi-
tion are based on the opinion of the authors. Individual targets should be
set by the individual’s healthcare provider with consideration of several
variables, including age, duration of diabetes, diabetes-related complica-
tions and level of hypoglycaemia awareness. In both training and

competition in individuals aged <25 years, if the HbA1c goal is
<58 mmol/mol [7.5%], then the TIR target should be set to ~60% but a
goal of <4% time below target range (<3.9 mmol/l glucose) should be
maintained. aIncludes percentage of values >13.9 mmol/l. bIncludes
percentage of values <3.0 mmol/l. This figure is available as part of a
downloadable slideset
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foods, and managing changes in climate and other environ-
mental conditions. If significant time zone changes will occur,
those using MDI may need to alter their basal insulin strategy,
such as by splitting the basal dose into two doses spaced ~12 h
apart before departure [100], or use insulin degludec, which
has a long half-life (>25 h) and is more flexible with respect to
dose timing than insulin glargine (~12 h half-life) [101].

Summary

Despite the challenges, athletes with type 1 diabetes
continue to excel at all levels of competition, with some
even achieving gold medals at the Olympic Games.
Several strategies can be implemented to help manage
athletes with type 1 diabetes (see Text box). Recent

Jet lag

Effects of flying on 

insulin pump

Pack 

spare 

insulin

Consequences 

of delayed/late 

flights on 

blood glucose

Getting 

glucose 

monitors 

and insulin 

pumps 

through 

security

Choosing an 

appropriate

on-board meal

Risk of 

lost 

baggage

Change in climate 

on blood glucose

Snacks to prevent and 

treat hypoglycaemia 

F      C

120

100

80

60

40

20

0

-20

-40

-50

50

40

30

20

10

0

-10

-20

-30

-40

Storing 

insulin at 

correct

temperature

Travel

Reduce 

sedentary 

time/increase 

physical activity

  whilst travelling

Fig. 6 Additional travel considerations for athletes with type 1 diabetes.
A summary of practical considerations that an athlete with type 1 diabetes
should take into account when travelling for athletic competition. Long-
distance travel typically increases sedentary time (not shown), can alter
food choices and tends to be associated with risk of hypo- and

hyperglycaemia [99]. Increased vigilance around glucose monitoring
and insulin-dose alterations, as well as access to healthy dietary options,
diabetes supplies and, at least, light physical activity (not shown), should
be considered. This figure is available as part of a downloadable slideset
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Considerations Strategies

Relative hyperinsulinaemia during 

prolonged exercise

If using CSII:

50–80% basal rate reduction set 90 min pre exercise

or

Pump suspension at exercise onset (less effective at mitigating hypoglycaemia)

If using MDI:

20–50% basal rate reduction before exercise event

and/or

Carbohydrate consumption (up to 70–90 g/h) during exercise

All athletes:

Mini-dose glucagon pre exercise (not currently approved)

Relative hypoinsulinaemia post 

intensive exercise

If using CSII:

Temporary insulin basal rate increase

If using MDI or CSII:

Hydrate

More prolonged aerobic warm-up

Restructuring and overlearning of skills to offset stress

Glucose management with 

dynamic training

If using rtCGM or isCGM:

Sugar-free hydration if glucose is elevated (>10.0 mmol/l)

Initiate carbohydrate feeding if glucose level drops below 8.0 mmol/l based on self-monitored 

blood glucose or CGM 

Review AGP with healthcare team

Review current strategies for management around competition and training

During training, aim for >70% TIR, <4% below 3.9 mmol/l and <1% below 3.0 mmol/l

During competition, aim for >75% TIR and <1% below 3.9 mmol/l

Glucose management with 

different modalities and durations 

of exercise

If partaking in aerobic exercise:

Generally, causes drop in blood glucose levels

If partaking in more intensive aerobic/anaerobic exercise:

Generally, may cause rise in blood glucose in the fasted state and a rise in lactate

Reductions in insulin not recommended

Post-exercise hyperglycaemia can be managed with a conservative insulin bolus (50% of 

usual correction dose)

Nutrition and carbohydrate intake Some athletes with type 1 diabetes claim to moderate carbohydrate intake to help with 

glucose management

Training before breakfast is likely to require little-to-no carbohydrate ingestion during activity

Carbohydrate loading pre exercise and/or feeding during competition is feasible as long as 

insulin is matched to the amount of carbohydrate

If carbohydrate intake is limited following prolonged exercise, restoring muscle glycogen may 

take longer

If partaking in activities for 30–60 min:

Under basal circulating insulin levels, 8–20 g carbohydrate will suffice

With higher circulating insulin levels, 30–60 g/h carbohydrate may be needed

If partaking in activities for >60 min:

Likely to require carbohydrate intake and/or insulin reduction

0.4–1.3 g carbohydrate per kg of body mass per h recommended to prevent hypoglycaemia 

and enhance performance

Hydration Plain water or carbohydrate–electrolyte beverage should be consumed at a rate of ~1 l/h 

based on performance goals and blood glucose level

rtCGM or isCGM Carbohydrate consumption should be initiated when interstitial glucose drops below ~8.0 

mmol/l during endurance events

During training, aim for >70% TIR, <4% below 3.9 mmol/l, and <1% below 3.0 mmol/l

During competition, aim for >75% TIR

Recommendations for glycaemic management in competitive athletes 

with type 1 diabetes
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advances in glucose monitoring technologies allow for
minute by minute manipulations in insulin administra-
tion and nutrient intake to achieve near optimal
glycaemic control. In general, athletes with type 1
diabetes perform training and competition with elevated
circulating insulin levels and blunted glucagon responses
that typically require a high rate of carbohydrate
consumption in race events. However, some athletes
follow a low-to-moderate-carbohydrate diet on non-race
days, which appears to improve overall glycaemic
control and preserve muscle glycogen storage capacity.
Future research is needed to better define the optimal
macronutrient diet for training and competition in these
exceptional athletes. Maintaining a high TIR should
allow for maximal performance and safety during
periods of training, travel and competition.
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